The potential for flower nectar to allow mosquito to mosquito transmission of Francisella tularensis
نویسندگان
چکیده
Francisella tularensis is disseminated in nature by biting arthropods such as mosquitoes. The relationship between mosquitoes and F. tularensis in nature is highly ambiguous, due in part to the fact that mosquitoes have caused significant tularemia outbreaks despite being classified as a mechanical vector of F. tularensis. One possible explanation for mosquitoes being a prominent, yet mechanical vector is that these insects feed on flower nectar between blood meals, allowing for transmission of F. tularensis between mosquitoes. Here, we aimed to assess whether F. tularensis could survive in flower nectar. Moreover, we examined if mosquitoes could interact with or ingest and transmit F. tularensis from one source of nectar to another. F. tularensis exhibited robust survivability in flower nectar with concentrations of viable bacteria remaining consistent with the rich growth medium. Furthermore, F. tularensis was able to survive (albeit to a lesser extent) in 30% sucrose (a nectar surrogate) over a period of time consistent with that of a typical flower bloom. Although we observed diminished bacterial survival in the nectar surrogate, mosquitoes that fed on this material became colonized with F. tularensis. Finally, colonized mosquitoes were capable of transferring F. tularensis to a sterile nectar surrogate. These data suggest that flower nectar may be capable of serving as a temporary source of F. tularensis that could contribute to the amplification of outbreaks. Mosquitoes that feed on an infected mammalian host and subsequently feed on flower nectar could deposit some F. tularensis bacteria into the nectar in the process. Mosquitoes subsequently feeding on this nectar source could potentially become colonized by F. tularensis. Thus, the possibility exists that flower nectar may allow for vector-vector transmission of F. tularensis.
منابع مشابه
Transstadial Transmission of Francisella tularensis holarctica in Mosquitoes, Sweden
In Sweden, human cases of tularemia caused by Francisella tularensis holarctica are assumed to be transmitted by mosquitoes, but how mosquito vectors acquire and transmit the bacterium is not clear. To determine how transmission of this bacterium occurs, mosquito larvae were collected in an area where tularemia is endemic, brought to the laboratory, and reared to adults in their original pond w...
متن کاملEtymologia: Francisella tularensis
IA. The ultrastructural characteristics of Francisella tularensis interaction with Tetrahymena pyriformis. Biological diversity versus risk for mosquito nuisance and disease transmission in constructed wetlands in southern Sweden.fer K. Detection of Francisella tularensis in Alaskan mosquitoes (Diptera: Culicidae) and assessment of a laboratory model for transmission. The present distribution a...
متن کاملTransmission of tularemia from a water source by transstadial maintenance in a mosquito vector
Mosquitoes are thought to function as mechanical vectors of Francisella tularensis subspecies holarctica (F. t. holarctica) causing tularemia in humans. We investigated the clinical relevance of transstadially maintained F. t. holarctica in mosquitoes. Aedes egypti larvae exposed to a fully virulent F. t. holarctica strain for 24 hours, were allowed to develop into adults when they were individ...
متن کاملPotential for the Invasive Species Aedes Albopictus and Arboviral Transmission through the Chabahar Port in Iran
Background: Dengue, chikungunya, and Zika viruses are emerging infectious disease threats wherever suitable vectors, hosts, and habitat are present. The aim of the present study was to use the bioagent transport and environmental modeling system (BioTEMS) to identify the potential for arbovirus-infected Aedes species to invade the Chabahar area in southeastern Iran. Methods: ArcGIS geospatial a...
متن کاملDoes Type I Interferon Limit Protective Neutrophil Responses during Pulmonary Francisella Tularensis Infection?
FRANCISELLA TULARENSIS Host–microorganism co-existence has enabled many pathogens to develop mechanisms to evade the immune system. One prime example is Francisella tularensis. This Gram-negative bacterium infects various wild animals such as rodents and rabbits, but also exists in water and soil. In rare cases, humans acquire F. tularensis infections through inhalation of particles from infect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017